# Shadow of Kerr black hole surrounded by an angular Gaussian distributed plasma

Zhenyu Zhang

School of Physics, Peking University

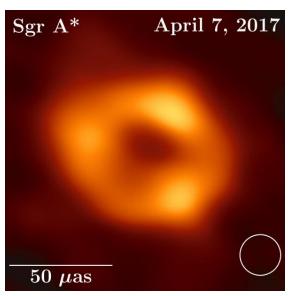
Based on arXiv: 2206.04430

Collaborators: Haopeng Yan, Minyong Guo and Bin Chen

## Motivation

- Event Horizon Telescope
  - Physical information near black holes
    - Spacetime background
    - Accretion flow
- Accretion Disk
  - Made of **plasma**
  - Type
    - Geometric thin, optical thick
    - Geometric thick, optical thin







(Image Source: https://www.nasa.gov/)

#### Theoretical basis

• Hamiltonian of photon motion in a cold non-magnetized plasma (Synge 1960)

$$H = \frac{1}{2} (g_{\mu\nu} p^{\mu} p^{\nu} + \boldsymbol{\omega_p^2})$$

 $\omega_p$ : plasma frequency

According to plasma physics

$$\omega_p^2(x) = \frac{4\pi e^2}{m_e} N(x) \propto N(x)$$

• Analytical methods are only available for some special cases

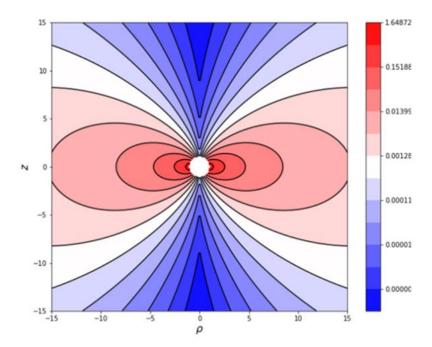
$$\omega_p^2(r,\theta) = \frac{f_r(r) + f_\theta(\theta)}{r^2 + a^2 \cos^2 \theta}$$

• Numerical method is applied in our work for general case

#### Plasma distribution models

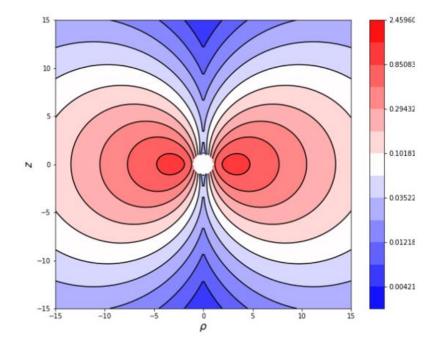
Model A (two parameters)

$$\omega_{pA}^2(r,\theta) = \frac{k_A}{r^2} e^{-\frac{\left(\theta - \frac{\pi}{2}\right)^2}{2\xi_{\theta}^2}}$$

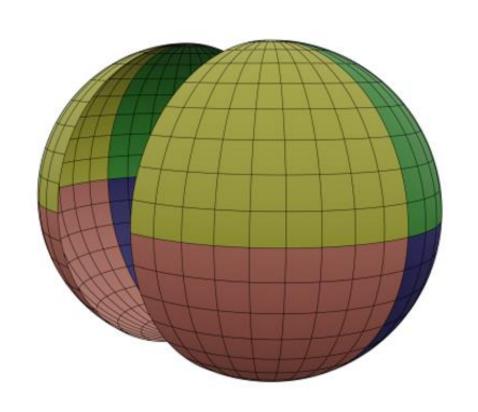


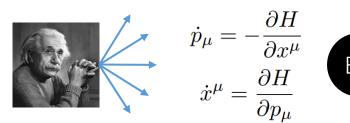
Model B (four parameters)

$$\omega_{pB}^2(r,\theta) = k_B e^{-\frac{\left(\log\frac{r}{r_m}\right)^2}{2\sigma^2}} e^{-\frac{\left(\theta - \frac{\pi}{2}\right)^2}{2\xi_{\theta}^2}}$$

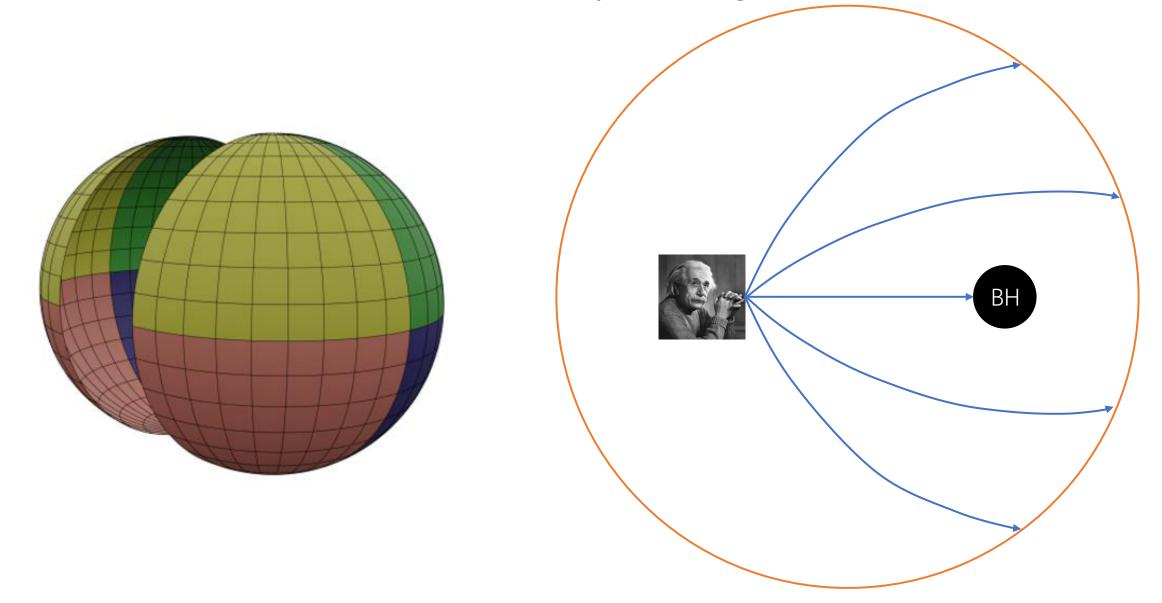


## Numerical method: backward ray-tracing





Numerical method: backward ray-tracing



## Results of model A

$$\omega_{pA}^2(r,\theta) = \frac{k_A}{r^2} e^{-\frac{\left(\theta - \frac{\pi}{2}\right)^2}{2\xi_{\theta}^2}}$$

Change  $k_A$ : 1 ~ 26



$$a = 0.998, \theta_{obs} = \frac{\pi}{2}, \xi_{\theta} = 0.36$$

Change  $\xi_{\theta}$ : 0.09 ~ 0.72



$$a = 0.998, \theta_{obs} = \frac{\pi}{2}, k_A = 16$$

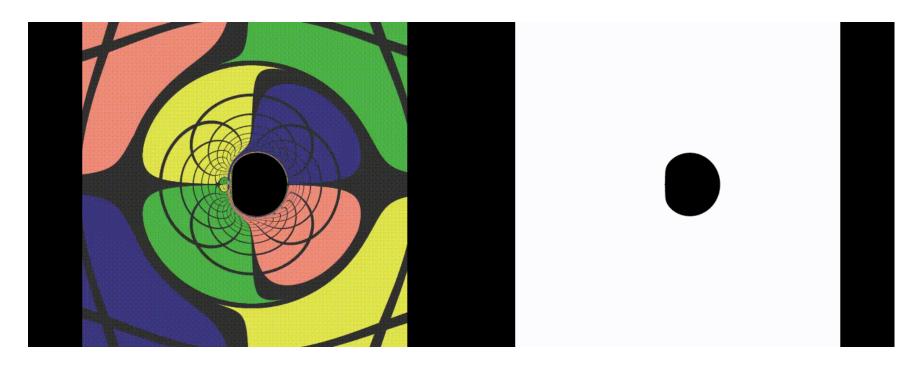
## Results of model B

$$\omega_{pB}^{2}(r,\theta) = k_{B}e^{-\frac{\left(\log\frac{r}{r_{m}}\right)^{2}}{2\sigma^{2}}}e^{-\frac{\left(\theta-\frac{\pi}{2}\right)^{2}}{2\xi_{\theta}^{2}}}$$

$$r_1 = \frac{r_m - r_h}{10}i$$
,  $i = 1, 2, ..., 10$   $(r_m, \sigma) \rightarrow (r_m, i)$  a smaller  $i$  corresponds to a faster decay rate  $r_{1,2} = r_m e^{\pm \sqrt{2 \log 10} \sigma}$ 



Change  $r_m$ : 2 ~ 12



Set 
$$G = c = M = 1$$

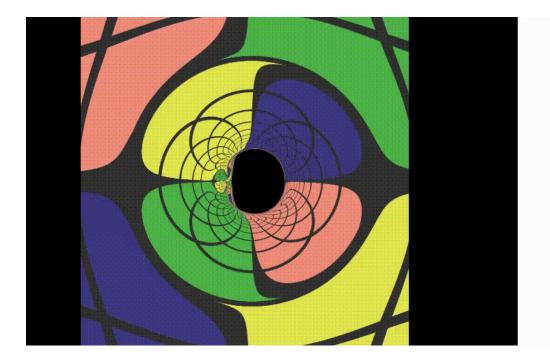
$$a = 0.998, \theta_{obs} = \frac{\pi}{2}, k_B = 0.8, \xi_{\theta} = 0.36, i = 10$$

## Results of model B

$$\omega_{pB}^{2}(r,\theta) = k_{B}e^{-\frac{\left(\log\frac{r}{r_{m}}\right)^{2}}{2\sigma^{2}}}e^{-\frac{\left(\theta-\frac{\pi}{2}\right)^{2}}{2\xi_{\theta}^{2}}}$$

$$r_1 = \frac{r_m - r_h}{10}i$$
,  $i = 1, 2, ..., 10$   $(r_m, \sigma) \rightarrow (r_m, i)$  a smaller  $i$  corresponds to a faster decay rate  $r_{1,2} = r_m e^{\pm \sqrt{2 \log 10} \sigma}$ 

Change *i*: 10 ~ 1





Set G = c = M = 1

$$a = 0.998, \theta_{obs} = \frac{\pi}{2}, \xi_{\theta} = 0.36, r_m = 3$$

# Qualitative explanation

• The refractive index  $n^2 = 1 - \frac{\omega_p^2}{\omega^2} < 1$ 

• Fewer rays hit the black hole

